A novel extended kernel recursive least squares algorithm

نویسندگان

  • Pingping Zhu
  • Badong Chen
  • José Carlos Príncipe
چکیده

In this paper, a novel extended kernel recursive least squares algorithm is proposed combining the kernel recursive least squares algorithm and the Kalman filter or its extensions to estimate or predict signals. Unlike the extended kernel recursive least squares (Ex-KRLS) algorithm proposed by Liu, the state model of our algorithm is still constructed in the original state space and the hidden state is estimated using the Kalman filter. The measurement model used in hidden state estimation is learned by the kernel recursive least squares algorithm (KRLS) in reproducing kernel Hilbert space (RKHS). The novel algorithm has more flexible state and noise models. We apply this algorithm to vehicle tracking and the nonlinear Rayleigh fading channel tracking, and compare the tracking performances with other existing algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Square Root Extended Kernel Recursive Least Squares Algorithm for Nonlinear Channel Equalization

This study presents a square root version of extended kernel recursive least square algorithm. Basically main idea is to overcome the divergence phenomena arise in the computation of weights of the extended kernel recursive least squares algorithm. Numerically stable givens orthogonal transformations are used to obtain the next iteration of the algorithm. The usefulness of the proposed algorith...

متن کامل

KALMAN FILTERING IN REPRODUCING KERNEL HILBERT SPACES By PINGPING ZHU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy KALMAN FILTERING IN REPRODUCING KERNEL HILBERT SPACES By Pingping Zhu May 2013 Chair: José C. Prı́ncipe Major: Electrical and Computer Engineering There are numerous dynamical system applications that require estimation or prediction from...

متن کامل

A novel adaptive kernel method with kernel centers determined by a support vector regression approach

The optimality of the kernel number and kernel centers plays a significant role in determining the approximation power of nearly all kernel methods. However, the process of choosing optimal kernels is always formulated as a global optimization task, which is hard to accomplish. Recently, an algorithm, namely improved recursive reduced least squares support vector regression (IRR-LSSVR), was pro...

متن کامل

Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization

By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems...

متن کامل

Adaptation en ligne d’un dictionnaire pour les méthodes à noyau

This article tackles the online identification problem for nonlinear and nonstationary systems using kernel methods. The order of the model is controlled by the coherence criterion considered as a sparsification technique which leads to select the most relevant kernel functions to form a dictionary. We explore the dictionary adaptation using a stochastic gradient descent method along with an on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2012